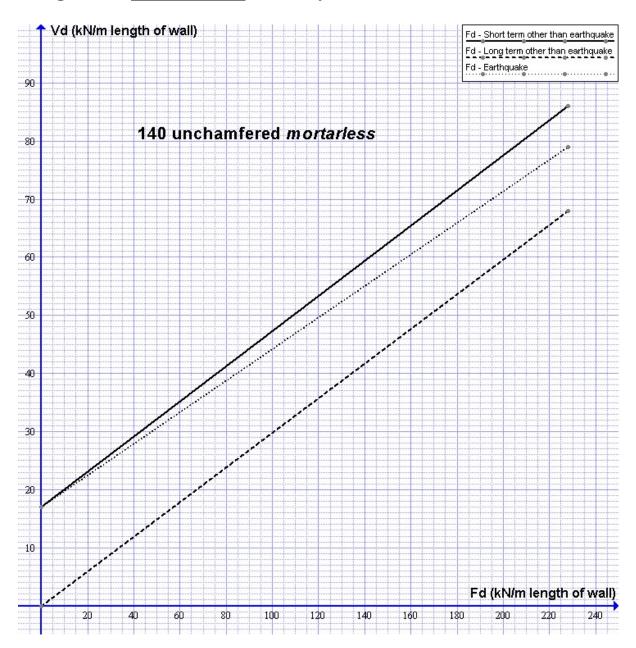
Page:

# SECTION 5. DESIGN OF WALLS FOR SHEAR


Load-bearing walls are mostly designed to carry axial compression loads however in many load bearing wall structures they are also designed to carry the lateral loads arising from wind, earthquake etc, i.e. they are designed as shear walls. Diagram 5-1 and Table 5.1 provide a means of readily checking the capacity of a wall to take in-plane shear.

Load-bearing walls can also be subjected to out of plane lateral loads, a typical example being a retaining wall designed to carry earth pressure loads. These walls may need to be checked for transverse shear loads at critical sections and Table 5.2 is provided to make this task very easy. It is recommended however that the out-of-plane shear capacity is determined using AS 3600 as the transverse shear capacity increases as the axial load  $N^*$  increases and this makes sense.

Reinforced *mortarless* is also often used as lintel beams and the like to span across openings. These members need to be designed for shear the same as any reinforced concrete beam and Tables 5.3 and 5.4 make it very easy to check the shear capacity of *mortarless* beams.

Page:

Diagram 5-1: In-plane shear capacity of 140 *mortarless* walls designed as <u>unreinforced</u> masonry



- 1.  $F_d$  is the <u>minimum</u> design compressive load on the shear wall acting simultaneously with the design shear force.
- 2.  $V_d$  is the design shear capacity of the shear wall in kN per metre length of wall.
- 3. Linear interpolation is permitted.
- 4. It is recommended that any shear wall being designed to resist earthquake loads be designed as a reinforced wall and reinforced accordingly.
- 5. This chart should be used if the reinforcement in the wall does not meet the minimum requirements outlined in Table 5.1 below.

Table 5.1: In-plane shear capacity of <u>reinforced</u> mortarless

|      | SHEAR WALL CAPACITY $V_{ m d}$ (kN/m length of wall) - UNCHAMFERED BLOCKS |         |         |         |                                                                                |  |  |
|------|---------------------------------------------------------------------------|---------|---------|---------|--------------------------------------------------------------------------------|--|--|
| H/L  | WALL REINFORCEMENT                                                        |         |         |         |                                                                                |  |  |
|      | N12-200                                                                   | N12-400 | N12-600 | N12-800 |                                                                                |  |  |
| 0.1  | 289                                                                       | 206     | 179     | 165     | WHEN USING THIS SECTION OF THE TABLE.                                          |  |  |
| 0.2  | 285                                                                       | 202     | 175     | 161     | WALL REINFORCEMENT IS EITHER THE                                               |  |  |
| 0.3  | 280                                                                       | 198     | 170     | 157     | VERTICAL OR THE HORIZONTAL REINFORCEMENT, WHICHEVER IS THE LESS.               |  |  |
| 0.4  | 276                                                                       | 194     | 166     | 153     | ,                                                                              |  |  |
| 0.5  | 272                                                                       | 189     | 162     | 148     | MINIMUM VERTICAL REINFORCEMENT IS N12-<br>600 (OR N16-800).                    |  |  |
| 0.6  | 268                                                                       | 185     | 158     | 144     | MINIMUM HORIZONTAL REINFORCEMENT IS<br>N12-800.                                |  |  |
| 0.7  | 263                                                                       | 181     | 153     | 140     |                                                                                |  |  |
| 0.8  | 259                                                                       | 177     | 149     | 135     | IF MINIMUM REINFORCEMEMENT REQUIREMENTS ARE NOT MET THEN WALL                  |  |  |
| 0.9  | 255                                                                       | 172     | 145     | 131     | MUST BE DESIGNED FOR SHEAR AS                                                  |  |  |
| 1.0  | 251                                                                       | 168     | 140     | 127     | UNREINFORCED                                                                   |  |  |
| 1.1  | 231                                                                       | 156     | 140     | 127     | WHEN USING THIS SECTION OF THE TABLE                                           |  |  |
| 1.2  | 214                                                                       | 146     | 131     | 119     | WALL REINFORCEMENT IS THE HORIZONTAL                                           |  |  |
| 1.3  | 200                                                                       | 136     | 123     | 111     | REINFORCEMENT AND ALL HORIZONTAL BARS ARE TO BE ANCHORED AT THEIR EXTREMITIES. |  |  |
| 1.4  | 186                                                                       | 127     | 115     | 105     | MINIMUM VEDTICAL DEINICOPOEMENT IC NAC                                         |  |  |
| 1.5  | 174                                                                       | 119     | 108     | 98      | MINIMUM VERTICAL REINFORCEMENT IS N12-<br>600 (OR N16-800).                    |  |  |
| 1.6  | 163                                                                       | 111     | 101     | 92      | MINIMUM HORIZONTAL REINFORCEMENT IS N12-800.                                   |  |  |
| 1.7  | 153                                                                       | 104     | 94      | 86      | 1412 000.                                                                      |  |  |
| 1.8  | 143                                                                       | 97      | 88      | 80      | IF MINIMUM REINFORCEMEMENT                                                     |  |  |
| 1.9  | 134                                                                       | 90      | 82      | 74      | REQUIREMENTS ARE NOT MET THEN WALL MUST BE DESIGNED FOR SHEAR AS               |  |  |
| 2.0  | 125                                                                       | 84      | 76      | 69      | UNREINFORCED.                                                                  |  |  |
| 2.1  | 117                                                                       | 78      | 70      | 63      |                                                                                |  |  |
| 2.2  | 109                                                                       | 72      | 65      | 58      |                                                                                |  |  |
| 2.3  | 102                                                                       | 66      | 59      | 53      |                                                                                |  |  |
| >2.3 | DESIGN USING RULES FOR OUT-OF-PLANE SHEAR                                 |         |         |         | REFER CLAUSE 8.6.3                                                             |  |  |

- 1. *H* is the height of the shear wall and *L* is the length of the shear wall.
- 2.  $V_d$  is the design shear capacity of the shear wall in kN per metre length of wall.
- 3. The reinforcement must be symmetrical in the cross section.
- 4. Provide 1-N12 (minimum) within 300mm of each edge parallel to the main reinforcement unless the edge in question is anchored to a reinforced concrete member with starter bars matching or exceeding the area of the main reinforcement.
- 5. If the wall is not externally supported against overturning, ensure it is anchored such that it meets the requirements of clause 8.6.2 a) (D).
- 6. The tabulated values apply to both Grade 15 and Grade 20 blocks.
- 7. Linear interpolation is permitted.

# Table 5.2: Out-of-plane shear capacity of 140 *mortarless* shear walls designed as <u>reinforced</u> masonry

| 140 unchamfered mortarless Out-of-plane shear |                |  |  |  |  |
|-----------------------------------------------|----------------|--|--|--|--|
| Vertical                                      | Shear capacity |  |  |  |  |
| reinforcement                                 | (kN/m)         |  |  |  |  |
| N12-200                                       | 17.7           |  |  |  |  |
| N12-400                                       | 14.9           |  |  |  |  |
| N12-600                                       | 13.9           |  |  |  |  |
| N12-800                                       | 13.4           |  |  |  |  |
|                                               |                |  |  |  |  |

- 1. Walls to be designed as reinforced for shear
- 2. All vertical reinforcement is to be fully anchored beyond top and bottom of wall panel

TABLE 5.3: Shear capacity of beams without shear reinforcement

| 140 unchamfered <i>mortarless</i> |            |                    |                                                         |          |          |  |
|-----------------------------------|------------|--------------------|---------------------------------------------------------|----------|----------|--|
|                                   | Dimensions | Effective<br>Depth | Maximum V <sub>u</sub> without shear reinforcement (kN) |          |          |  |
|                                   | D x B      |                    | 1N12 btm                                                | 1N16 btm | 1N20 btm |  |
| 2 course beam<br>15MPa blocks     | 400 x 200  | 235                | 8.1                                                     | 9.9      | 11.5     |  |
| 2 course beam<br>20MPa blocks     | 400 x 200  | 235                | 9.0                                                     | 10.9     | 12.7     |  |
| 3 course beam<br>15 MPa blocks    | 600 x 200  | 435                | 12.3                                                    | 15.0     | 17.3     |  |
| 3 course beam<br>20 MPa blocks    | 600 x 200  | 435                | 13.5                                                    | 16.5     | 19.1     |  |
| 4 course beam<br>15 MPa blocks    | 800 x 200  | 635                |                                                         | 19.3     | 22.3     |  |
| 4 course beam<br>20 MPa blocks    | 800 x 200  | 635                |                                                         | 21.2     | 24.6     |  |
| 5 course beam<br>15 MPa blocks    | 1000 x 200 | 835                |                                                         | 23.2     | 26.8     |  |
| 5 course beam<br>20 MPa blocks    | 1000 x 200 | 835                |                                                         | 25.5     | 29.5     |  |
| 6 course beam<br>15 MPa blocks    | 1200 x 200 | 1035               |                                                         | 26.7     | 30.9     |  |
| 6 course beam<br>20 MPa blocks    | 1200 x 200 | 1035               |                                                         | 29.4     | 34.0     |  |

- 1. The tabulated shear capacities have been calculated in accordance with AS 3600
- 2. Install N12-200 horizontal intermediate bars in all beams fully anchored at both ends.

TABLE 5.4: Shear capacity of beams with R10-200 shear reinforcement

| 140 unchamfered <i>mortarless</i> |                     |                    |                                                                                                   |          |          |  |
|-----------------------------------|---------------------|--------------------|---------------------------------------------------------------------------------------------------|----------|----------|--|
|                                   | Dimensions<br>D x B | Effective<br>Depth | Maximum V <sub>u</sub> with shear reinforcement * (kN) (R10-200 shear reinforcement – single leg) |          |          |  |
|                                   |                     | d                  | 1N12 btm                                                                                          | 1N16 btm | 1N20 btm |  |
| 3 course beam<br>15 MPa blocks    | 600 x 200           | 435                | 42.8                                                                                              | 45.5     | 47.8     |  |
| 3 course beam<br>20 MPa blocks    | 600 x 200           | 435                | 44.0                                                                                              | 47.0     | 49.6     |  |
| 4 course beam<br>15 MPa blocks    | 800 x 200           | 635                |                                                                                                   | 63.8     | 66.8     |  |
| 4 course beam<br>20 MPa blocks    | 800 x 200           | 635                |                                                                                                   | 65.7     | 69.1     |  |
| 5 course beam<br>15 MPa blocks    | 1000 x 200          | 835                |                                                                                                   | 81.7     | 85.3     |  |
| 5 course beam<br>20 MPa blocks    | 1000 x 200          | 835                |                                                                                                   | 84.0     | 88.0     |  |
| 6 course beam<br>15 MPa blocks    | 1200 x 200          | 1035               |                                                                                                   | 99.2     | 103.4    |  |
| 6 course beam<br>20 MPa blocks    | 1200 x 200          | 1035               |                                                                                                   | 101.9    | 106.5    |  |

#### Notes:

- 1. The tabulated shear capacities have been calculated in accordance with AS 3600
- 2. Install N12-200 horizontal intermediate bars in all beams fully anchored at both ends.

TABLE 5.5: Shear capacity of beams with R10-400 shear reinforcement

| 140 unchamfered <i>mortarless</i> |                     |                    |                                                                                                                              |      |      |  |  |
|-----------------------------------|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|--|--|
|                                   | Dimensions<br>D x B | Effective<br>Depth | Maximum V <sub>u</sub> with shear reinforcement * (kN) (R10-400 shear reinforcement – single leg) 1N12 btm 1N16 btm 1N20 btm |      |      |  |  |
| 5 course beam<br>15MPa blocks     | 1000 x 200          | 835                | N/A                                                                                                                          | 52.4 | 56.0 |  |  |
| 5 course beam 20MPa blocks        | 1000 x 200          | 835                | N/A                                                                                                                          | 54.7 | 58.7 |  |  |
| 6 course beam<br>15 MPa blocks    | 1200 x 200          | 1035               | N/A                                                                                                                          | 62.9 | 67.1 |  |  |
| 6 course beam 20 MPa blocks       | 1200 x 200          | 1035               | N/A                                                                                                                          | 65.6 | 70.2 |  |  |

- 1. The tabulated shear capacities have been calculated in accordance with AS 3600
- 2. Install N12-200 horizontal intermediate bars in all beams fully anchored at both ends.